Chapitre 1

Les nombres réels

1.1 Introduction

On connait des propriétés des ensembles suivants :

N: L'ensemble des entiers naturels

 \mathbb{Z} : L'ensemble des entiers relatifs

Q: L'ensemble des nombres rationnels

R: L'ensemble des nombres réels

 \mathbb{C} : L'ensemble des nombres complexes.

O Un nombre rationnel est un nombre dont la partie décimale est finie, ou infinie et périodique.

$$\frac{1}{2};\frac{1}{3};\frac{2}{7}\cdots$$

 \odot Les nombres irrationnels sont des nombres qui ne peuvent pas se mettre sous la forme de $\frac{a}{b}$ avec $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$

Exemple 2

$$\pi$$
; e ; $\sqrt{3}$...

• Un nombre irrationnel est un nombre dont la partie décimale est infinie et non périodique.

1.2 Les nombres réels

Définition 1

L'ensemble des nombres rationnels et des nombres irrationnels forment l'ensemble des nombres réels. On le note \mathbb{R}

On définit sur \mathbb{R} deux opérations internes notées addition(+) et la multiplication (×) (× ou .) et une relation d'ordre notée : Inférieur ou égales (\leq).

1.3 Propriétés sur \mathbb{R}

Propriété

- 1
- i_1) + est associative \forall a et b et $c \in \mathbb{R}$, a + (b + c) = (a + b) + c.
- i_2) + est commutative $\forall a \text{ et } b \in \mathbb{R}, a+b=b+a$.
- i_3) + admet un élément neutre qui est 0 $\forall a \in \mathbb{R}, a+0=0+a=a$.
- i_4) tout élément de $\mathbb R$ admet un opposé noté (-a) appartenant à $\mathbb R$, $\forall a \in \mathbb R, -a \in \mathbb R$, a + (-a) = (-a) + a = 0.

Propriété

- 2
- j_1) · est associative \forall a et b et $c \in \mathbb{R}$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- j_2) · est commutative $\forall a \text{ et } b \in \mathbb{R}, a \cdot b = b \cdot a$.
- j_3) · est distributive par rapport à + et on a : \forall a et b et $c \in \mathbb{R}$, $a \cdot (b+c) = a \cdot b + a \cdot c$.
- j_4) tout élément de \mathbb{R}^* admet un inverse noté $\frac{1}{a} = a^{-1} \in \mathbb{R}$ et $a \cdot \frac{1}{a} = a \cdot a^{-1} = a^{-1} = \frac{1}{a} \cdot a = 1$.
- j_5) · admet un élément neutre qui est 1 $\forall a \in \mathbb{R}, a \cdot 1 = 1 \cdot a = a$.

Propriété

- 3
- k_1) \leq est réflexive $\forall a \in \mathbb{R}, a \leq a$.
- k_2) \leq est antisymétrique \forall a et $b \in \mathbb{R}$, si $a \leq b$ et $b \leq a$ alors a = b.
- k_3) \leq est transitive \forall a et b et $c \in \mathbb{R}$, si $a \leq b$ et $b \leq c$ alors $a \leq c$.
- k_4) \leq est une relation d'ordre total : deux éléments de $\mathbb R$ sont forcement comparables, $\forall~a~,~b\in\mathbb R, a\leq b$ ou $b\leq a$.

1.4 Borne inférieure-Borne supérieure

Soit $A \subset \mathbb{R}$ (A est une partie non vide de \mathbb{R}); et $x \in R$.

- **②** On dit que x est un majorant de A si et seulement si et seulement si $\forall a \in A$ on a : $a \le x$.
- \bigcirc On dit que x est un minorant de A si et seulement si et seulement si $\forall a \in A$ on $a: x \leq a$.

Exemple 3

Soit I =]0;2[, 4; 3 sont des majorants de I0 est un minorant de I; -1 aussi.

$$*x \in A$$
 et

*x est un majorant (minorant de A)

Cet élément est unique. On l'appelle aussi maximum de A(minimum de A). On le note $\max(A) [\min(A)]$.

Exemple 4

Soit
$$J =]-1;0]$$

max(J) = 0, min(J) n'existe pas.

Remarque 1

- * On dit d'un ensemble qu'il est majoré (resp. minoré) sur $\mathbb R$ si et seulement si celui-ci admet un majorant(resp. minorant).
- ★ On dit d'un ensemble qu'il est borné si et seulement si il est à la fois majoré et minoré.

♠ Caractérisation

* Toute partie $A \subset \mathbb{R}$ non vide et majorée admet une borne supérieure. S'il existe, cet élément est noté $\sup(A)$.

Exemple 5

```
Soit A = ]-2;3[;

\sup(A) = 3
```

La borne supérieure représente le plus petit des majorants.

Soit $A \subset \mathbb{R}$ et $M \in \mathbb{R}$. Pour que $M = \sup(A)$ il faut et il suffit que :

- i_1) $\forall x \in A, x \leq M$
- i_2) $\forall \varepsilon > 0$, $\exists a \in A \text{ tel que } a > M \varepsilon$

* Toute partie $A \subset \mathbb{R}$ non vide et minorée admet une borne inférieure. S'il existe, cet élément est noté $\inf(A)$.

La borne inférieure représente le plus grand des minorants.

Exemple 6

```
Soit A = ]1;2];
inf(A) = 1
```

1.5 Voisinage

Définition 2

Soit A une partie de \mathbb{R} et $x_0 \in \mathbb{R}$. On appel voisinage de x_0 tut intervalle ouvert d'amplitude très petit et centré sur x_0 .

Le voisinage de x_0 se note $V(x_0) = \big]x_0 - \varepsilon; x_0 + \varepsilon \big[$ où ε est une quantité infinitésimale.

] -0,00000001;0.00000001[est un voisinage de 0

La notation $x \rightarrow x_0$ représente le voisinage de x_0 .

 \star On appelle voisinage pointé de x_0 , le voisinage x_0 privé de x_0 lui même. Il est noté $\mathring{V}(x_0) = V(x_0) - \{x_0\}.$

Remarque 2

 $V(+\infty) = A; +\infty$ où A est une quantité très grande.

NADJIME PINDRA FDS-UL